En los Ejercicios 1-8, determine para qué números reales la ecuación es válida. Si no existe solución, indíquelo.

1.
$$(x + 3, 5) = (-1, 9 + x)$$

1.
$$(x + 3, 5) = (-1, 9 + x)$$
 5. $(x - 2y, 2x + y) = (-1, 3)$

2.
$$(x-4,2)=(3,x-5)$$

6.
$$(2x + 3y, x + 4y) = (3, -1)$$

3.
$$(2x - 7, x + 2) = (-5, 3)$$

7.
$$(x^2 - 2x, x^2 - x) = (3, 6)$$

4.
$$(3x + 2, 2x - 3) = (8, 1)$$

2.
$$(x - 4, 2) = (3, x - 5)$$
 6. $(2x + 3y, x + 4y) = (3, -1)$ **7.** $(x^2 - 2x, x^2 - x) = (3, 6)$ **4.** $(3x + 2, 2x - 3) = (8, 1)$ **8.** $(x^2 + 2x, 2x^2 + 3x) = (-1, -1)$

En los ejercicios 9-14, calcule la distancia que separa a los puntos dados S y T. Escriba el resultado en la forma más simplificada posible.

9.
$$S(1, 3), T(-2, 6)$$

12.
$$S(\sqrt{3}, -\sqrt{3}), T(-\sqrt{3}, \sqrt{3})$$

10.
$$S(1, -6), T(6, 6)$$

13. S(4,
$$\sqrt{3}$$
), T(2, -1)

9. S(1, 3), T(-2, 6)
10. S(1, -6), T(6, 6)
11. S(
$$\sqrt{2}$$
, $\sqrt{2}$), T($-\sqrt{2}$, $-\sqrt{2}$)
12. S($\sqrt{3}$, $-\sqrt{3}$), T($-\sqrt{2}$)
13. S(4, $\sqrt{3}$), T(2, -1)
14. S($\sqrt{2}$, $-\sqrt{3}$), T(1, 2)

14.
$$S(\sqrt{2}, -\sqrt{3}), T(1, 2)$$

- 15. Demuestre que el triángulo cuyos vértices son los puntos R(0, 1), S(8, -7), y T(1, -6) es un triángulo isósceles.
- **16.** Demuestre que los puntos R(-4, 4), S(-2, -4), y T(6, -2) son los vertices de un triángulo isósceles.
- 17. Demuestre que el punto Q(1, -2) es equidistante de los puntos R(-11, -2)3), S(6, 10), Y(1, 11).
- **18.** Demuestre que el punto Q(2, -3) es equidistante de los puntos R(6, 0), S(-2, -6), y T(-1, 1).
- 19. Los puntos Q(1, 1), R(2, 5), S(6, 8), y T(5, 4) son los vértices de un cuadrilátero. Demuestre que los lados opuestos del cuadrilátero tienen la misma longitud.
- 20. ¿Son de la misma longitud los lados opuestos del cuadrilátero cuyos vértices son Q(-2, 3), R(5, 2), S(7, -4), y T(0, -2)?
- 21. Use la fórmula de distancia para demostrar que los puntos R(-2, -5). S(1, -1), y T(4, 3) están sobre una recta.
- **(22)** Demuestre que los puntos R(-3, 3), S(2, 1), y T(7, -1) están sobre una
- **23.** Demuestre que R(1, 5) es el punto medio del segmento cuyos extremos son los puntos S(-2, 3) y T(4, 7).
- **24.** Demuestre que $M\left(\frac{a+c}{2}, \frac{b+d}{2}\right)$ es el punto medio del segmento

cuyos extremos son los puntos S(a, b) y T(c, d).

- **25.** Calcule cuál es el punto medio del segmento cuyos extremos son S(-2, 9)y T(8, -1).
- **26.** Calcule cuál es el punto medio del segmento cuyos extremos son S(-3, 5)
- 27. Demuestre que para los puntos $A(x_1, 0)$ y $B(x_2, 0)$, $d(A, B) = |x_2 x_1|$.
- **28.** Demuestre que para los puntos $C(0, y_1)$ y $D(0, y_2)$, $d(C, D) = |y_2 y_1|$.